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ABSPRACT 

The propagation coefficient for the current flowing in a Beverage aerial driven by a generator is derived from 
the compensation theorem. Comparison is made with measurements and with other theoretical methods. It is 
concluded that the attenuation increases approximately as the square root of the frequency, reaching a limiting 
value at  high frequencies. The velocity of propagation is less than the free-space velocity, but tends towards 
it a t  high frequencies. Expressions for the characteristic impedance of the aerial are also given. 

LIST OF PRINCIPAL SYMBOLS 

c 
E = electric-field strength 
f = frequency, MHz 
H = magnetic-field strength 
h 
I 
K 

Kr 

= velocity of propagation in free space 

= height of conductor above ground 
= current flowing in conductor 
= contribution to the surface integral, per unit length 

= f r  - jl.8 X lO*o/f, complex relative permittivity 

= distance between terminals A and B 
= velocity of propagation along the conductor 
= complex factor defined in Section 2.2 
= mutual impedance between terminals A and B 

along the direction of the conductor 

of ground 

v 
W 
2, 
Zc = characteristic impedance 
(Y = attenuation constant 
fl = phase constant 
Y = a + jp = propagation coefficient 
cr = relative permittivity of ground 

= intrinsic impedance 
A = wavelength 
u = ground conductivity, S/m 
Unprimed quantities (e.g. E,) denote fields, currents etc. 
for the conductor when over perfectly conducting ground. 
Primed quantities (e.g. EL) denote the corresponding quan- 
tities when the ground is imperfectly conducting. The sub- 
script 0 (e.g. q0)  is used to denote the intrinsic impedance 
and propagation constant of free space. Corresponding quan- 
tities without subscripts refer to the lower medium. 

1 INTRODUCTION 
The.Beverage aerial consists of a long wire supported on 
poles a few metres  above the ground, terminated a t  its far 
end by a resistance. It was first used in the USA in 1922 
for the reception of European v.1.f. transmitters, and aerials 
up to 12 km long were constructed.' Current applications 
include the reception of distant m.f. and h.f. transmitters. 
The use of the aerial for transmission has also been con- 
sidered. 
Whether the aerial is used for transmission or  reception, a 
knowledge of the propagation coefficient for the current which 
would travel along it if  it were driven is essential if its per- 
formance is to be assessed. The propagation coefficient is 
derived here by applying the compensation theorem,2 and 
the result is compared with measurements and with other 
theoretical methods. Expressions for the characteristic im- 
pedance of the aerial are also derived. 

a THEORETICAL ANALYSIS 
' Fig. 1 shows a Beverage aerial which is driven at a pair of 

terminals A and has a second pair at B. The distance to the 
termination is assumed to be so large that no power is re- 
flected from it when the current is attenuated by imperfectly 
conducting ground. 

' 
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If the ground were perfectly conducting and the aerial were 
correctly terminated, the mutual impedance 2, between 
terminals A and B would be 

2, = Zc exp(- y 0 4  (1) 

where the symbols a r e  defined above. The corresponding ex- 
pression for imperfectly conducting ground is 

2~ = 2;: exp(7 '8)  (2) 

where Zb and y' are the required values for the characteristic 
impedance and propagation coefficient of the aerial. 
According to the compensation theorem,2 if  a change is made 
within a closed surface S which excludes two pairs of termi- 
nals A and B, the change in mutual impedance is given by 

where EA and HA are the electric and magnetic fields over 
S before the change is made when a current I(0) is impressed 
at terminals A, Eh and H', are the fields over S after the 
change when a current'I(0) is impressed a t  terminals B, and 
ds is an element of S regarded as a vector in the direction of 
the outward normal from the surface 
In the problem considered here, S is the surface of the ground. 
Fig. 1 shows the co-ordinate system, the origin being situated 
below the terminals A. The surface S corresponds to the 
y = 0 plane. 

i 

Fig .  1 

Beverage aerial and co-wdinate system 

Since the ground is initially perfectly conducting, the tan- 
gential component of E, is zero and the vector product 
E, X EL therefore makes no contribution to the surface 
integral. Over perfectly conducting ground, the only com- 
ponent of HA which is present is H,, and it therefore follows 
that the only component of E; which needs to be considered 
is E;. Consequently, eqn. 3 simplifies to 

(4) 

If the currents on the conductor are I(z) and I'(z) when the 
aerial is driven at terminals A and B, respectively, the con- 
tribution to the integral from a strip of ground of width 6z ' 
extending to infinity on either side of the conductor is pro- 
portional to the product of the currents. The contribution 
from the strip may therefore be expressed in the form 



ductor and on the ground constants. Eqn. 5 enables eqn. 4 
to be simplified to 

When a current I(0) is impressed at terminals A and the 
ground is perfectly conducting, the current distribution I(z) 
is given by 

I'(z) = I(0) exp (-roz) (7) 

When a current I(0) is impressed at terminals B, it divides 
equally between the two branches of the aerial, and is given 
bY 

O < z < P  I 

Z > L  

The second term on the right-hand side of eqn. 8 arises 
because the current is reflected at z = 0, where the terminals 
A are assumed to be open-circuited. 

Substitution of eqns. 1,2,7 and 8 in eqn. 6, followed by inte- 
gration between the appropriate limits, leads to 

(9) 
Y' exp (-Y'L) - yo exp (-Y& ) 

Y'2 - Ya  
= K  

Two special cases,P = 0 and 1 = co, may now be considered. 

(a) As 1 tends to infinity, the terms containing exp (-+a) 
tend to zero, and eqn. 9 is simplified to 

- K Yo 

Y'2 - Y8  
z -- C -  

Eqn. 10 gives the following expression for the propagation 
coefficient: 

y ' = y o  1-- ( 
(b) When J! = 0, terminals A and B coincide, and eqn. 9 is 
simplified to 

K Zc-Z' -- 
Y' + Y O  

C -  

Elimination of 7' from eqns. 10 and 12 leads to the following 
expression for the characteristic impedance: 

Eqns. 11 and 13 enable y' and Zh to be determined if K is 
evaluated. From eqn. 5, 

Solutions of this integral are discussed in the following 
Section. 

2.1 Approximate solution 
When the ground i s  perfectly conducting, the tangential mag- 
netic field % is given by 

perfectly conaucrlng grouna 1s approximaceiy q u a .  to tnar 
over perfectly conducting ground, provided that the modulus 
of the complex relative permittivity K, is greater than 10. 
This condition is satisfied by ground of good conductivity at 
all frequencies and by ground of poor conductivity (10-3 S/m) 
at frequencies below 2 MHz. It follows therefore that EL is 
given approximately by 

-Zs I'(z) h 

n(h2 + x2) 
E' - - Z  H' - z -  s x -  

where Zs is the surface impedance of the ground. Zs is equal 
to the intrinsic impedance of the lower medium,provided 
that H; does not vary over the surface to any great extent 
within a distance 11 171, where y i s  the propagation coefficient 
of the lower medium.2 This condition is assumed to be satis- 
fied for the approximate solution described in this Section. 

Substitution of eqns. 15 and 16 in eqn. 14, with Zs = z, leads 
to 

K = - J j m  qhZdx -* - (17) 
-m nz(h2 + x2)2 2ah 

Substitution of this value of K in eqns. 11 and 13 then gives 
the following approximate solutions for y' and Zh: 

2.2 More exact solution 

In the approximate solution, it w a s  assumed that Ek = -qH;, 
and that H& is  equal to the magnetic field over perfectly con- 
ducting ground. An expression for E; which does not require 
these approximations is derived in this Section. Ek is given 
by Maxwell's equation ((I + jwc) E = curl H a s  

(20) 

If eqn. 20 is  applied just below the surface of the ground, the 
value of EL at the surface is obtained. 

For perfectly conducting ground, the magnetic fields above 
the surface are usually calculated by assuming that an image 
current --I flows at a depth h below the surface. Here it is 
assumed that the magnetic fields above imperfectly conduct- 
ing ground may be calculated i n  a similar manner, by assum- 
ing that the strength of the image current is P I ,  where 

1 - Kr"2 

1 + KrY2 
P =  

and Kr is  the complex relative permittivity of the ground.* 
Although this procedure is somewhat empirical, it yields 
exact values for the fields when the ground is either perfectly 
conducting (Kr = 4)) or  absent (Kr 
expected to be a reasonable approxlmation for intermediate 
values of Kr. It also yields exact values for the fields at a 
great height above a conductor of finite length, for all values 
of Kr. 
The magnetic fields at the surface calculated in this way are 

1); it would therefore be 

KYzh I' 
H; = 

n(1 + Ky2)(h2 + x2) 

XI' 

- n(1 + Ky2)(h2 + x2) 
H'  - 

(223 

The magnetic fields immediately below the surface are identi- 
cal, since the boundary conditions require H to be continuous. 

* p is the Fresnel plane-wave reflection coefficient for 
nwmal ly  incident waves 
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The first  te rm on the right-hand side of eqn. 20 may now be 
obtained by differentiating eqn. 23, and is given by 

Hk(h2 - ~ 2 )  
(24) - I' (h2 - x2) aH; - 

JX n(l + Ky2)(h2 + x2)2 - KYzh(h2 + x2) 

The second term on the right-hand side of eqn. 20 may be 
obtained by assuming that the variation of H i  below the 
surface is described by the equation 

H;(Y) = H;(O) exp (yYy) (25) 

where yy is the y component of the propagation coefficient 
of the wave which propagates just below the surface.* In 
general, this wave may be resolved into an angular spectrum 
of plane waves. Here it will be assumed, for convenience, 
that a plane wave having no variation in the x direction pre- 
dominates; this assumption is reasonable at high frequencies, 
but is liable to fail at low frequencies, where the conductor 
height is comparable with the penetration depth. For the 
dominant wave described below, 

Y$ + Y l  = Y2 

where yz is the z component of its propagation coefficient 
and y is the propagation coefficient for plane waves in the 
lower medium. 

Differentiation of eqn. 25 then gives 

aH; 
- = YyHk 

a Y  

From eqns. 22,26 and 27, i t  follows that 

Now yz is equal to y', which is to be determined, and u + j w c  
is equal to v/q. Using these identities, it may be shown from 
eqn. 20,24 and 28 that a more accurate expression for E; is 

where H i  is given by eqn. 22. 

Substitution of eqn. 29 in eqn. 14, followed by integration, 
enables K to be expressed in the form 

K=* 
2nh 

where 

Comparison of eqns. 17 and 30 shows that they are of the 
same form, and it therefore follows that the more exact 
solutions for y' and ZA are given by 

(33) 

Since W contains y', eqn. 32 leads to a quadratic equation in 
Y ' ~ .  Although y' may be found by solving this equation, it is 
more convenient to substitute the approximate solution for 
y' in the expression for W and then to evaluate y' and 2' 
directly from eqns. 32 and 33. 

In principle, the value of y' derived from eqn. 32 could then 
be substituted in eqn. 31 for a further iteration, but computa- 
tion has  shown that no worthwhile advantage is to be gained 
from this procedure. 

* In eqn.25. the exponent y y y  is positive because paver - . . .. , . .. I .  I .  

3 APPLZCATION OF TaEORY 
In applying eqns. 18 and 19, or eqns. 32 and 33, to practical 
problems, formulas for the following quantities are  also 
required 

The characteristic impedance of the conductor over 
perfectly conducting ground 

Zc = 60 log (h/a) (34) 

where a is the conductor radius. 
The intrinsic impedance of the ground 

(35) = qoK~W2 

where q0 = 120n and Kr is the complex relative per- 
mittivity, defined as 

(36) 
Kr = E,. - . ,  

where E ;  = 1.8 X 104u/f. 

The free-space propagation coefficient 

yo = jPo = j2n/xo (37) 

where Xo is the free-space wavelength. 

The more exact solution also requires the value of y, the 
propagation coefficient in the lower medium, which is equal 
to yOKY2. 
In practice, the real part a' of the solution for 7' is small. 

It is more convenient to calculate the attenuation per kilo- 
metre, since the latter quantity is usually measured. The 
attenuation per  kilometre is equal to 86860' decibels. 

it is also more convenient to express the imaginary part 
p' in terms of the velocity of propagation along the conduc- 
tor,  relative to the free-space velocity (v/c). This is given 
by 

- -  v -111_ 
Po 

and is known as the velocity ratio. 
Fig. 2 shows how the velocity ratio and attenuation for the 
current flowing in a typical aerial varies with frequency, 
for a representative range of ground constants. Fig. 2a shows 
that the velocity ratio tends to the free-space velocity at 
high frequencies, and depends on the ground conductivity at 
low frequencies. Fig. 2b shows that the ground conductivity 
also controls the attenuation at low frequencies; but, at high 
frequencies, the attenuation tends to a limiting value which 
depends on the relative permittivity of the ground. Fig. 2b 
shows curves for three values of cr, for u = 0-003 S/m; 
curves for other conductivities tend to the same limiting 
values. The curves of Figs. 2 and 3 were computed by the 
method described in Section 2.2. 

Fig. 3 shows the variation of characteristic impedance with 
frequency. At high frequencies, it tends to the perfect-earth 
value, and at low frequencies it depends only on the ground 
conductivity. 
It may be shown that the variations of propagation coefficient 
and characteristic impedance with frequency are exactly 
the same as those of an air-spaced transmission line of 
characteristic impedance Zc into which a series impedance 
2 = qW/2nh per unit length has been inserted. If Z is small 
compared with yoZc, a' and 0' are given approximately by 

(39) 

where Re(Z) and Im(Z) denote the real and imaginary parts 
of Z, respectively, and jpo is the free-space propagation 
coefficient. The characteristic impedance is given approxi- 
mately by 

z ; -z  +z 
9.,- 



For the approximate solution, W = 1 and 2 = q/2nh. At 
high frequencies, q ,tends asymptotically to qoq1 '2 ,  and, con- 
sequently, y' and Zc also tend to asymptotic values. Eqns. 
39-41 show why the attenuation tends to a value which depends 
on the relative permittivity, while the velocity ratio and 
characteristic impedance tend to the perfect-earth values. 
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Fig. 2 
Theoretical propagation coefficient 
a Velocity ratio 
b Attenuation 
Conductor height = 3 m 
Perfect-earth characteristic impedance = 426 R 

At low frequencies, the real and imaginary par ts  of q are 
both approximately equal, and a re  proportional to fu2. At 
these frequencies, therefore, the attenuation increases as 
fv2 and the velocity ol propagation deviates from the free- 
space velocity approximately a s  f-vz. 

The trends described above apply also to the more exact 
solution. The principal differences between the two solutions 
arise at high frequencies, where the factor W difters appreci- 
ably from unity, but the only significant effect at high frequen- 
cies is an appreciable reduction in the attenuation. 

800k u ,S /m  
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frequency, MHz 

Fig. 3 
Theoretical characteristic impedance 

Conductor height = 3 m 
Perfect-earth characteristic impedance = 426 52 

Eqns. 39 and 40 also show that increasing the height of the 
conductor reduces both the attenuation and the velocity 
deviation; the effect is augmented by the small increase in - 2,. Raising the height of a Beverage aerial is not necessarily 

advantageous, however, as greater voltages are induced in 
the vertical end wires. The use of two o r  more conductors 
in parallel offers no advantage, since Zc is reduced and the 
attenuation is thereby increased. 

4 COMPARISON WITH MJZASUREMENTS 

The impedance/frequency characteristic of an 880 m 
Beverage aerial  was measured with the aerial open-circuited 
a t  i t s  far end. The aerial consisted of a single conductor of 
bare 6 s.w.g. (4.88 mm-diameter) copper wire erected at a 
height of 3-0 m above ground. 
The velocity ratio w a s  calculated by comparing the measured 
electrical length with the electrical length which the aerial 
would have had i f  v were equal to c. The attenuation was 
derived from the relative amplitudes of the forward and 
reflected waves, the reflection coefficient at  the far end 
being assumed to be unity. 
In Fig. 4, the measured values are compared with computed 
values, by the methoddescribedinSection 2.2, for  twoground 
conductivities; the conductivity below the aerial  i s  believed 
to lie between these values. The measured velocity ratios 
agree well with theory, but the measured attenuations are 
somewhat lower than the theory predicts. 

u = 0.01 slm t c,: 20. 
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frequency,MHz 
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Comparison of theoretical and measured propagation coeffi- 
cients 
a Velocity ratio b Attenuation 
Conductor height = 3 m 
Perfect-earth characteristic impedance = 426 Cl 

Impedance/frequency measurements were also made on a 
420 m aerial which was otherwise identical but was termi-  
nated in a 500 51 impedance. The measured impedance was 
approximately equal to the characteristic impedance of the 
aerial; more precise values of Z ;  were derived from the 
geometric means of measurements made at pairs of fre- 
quencies chosen so that the electrical lengths of the aerial 
differed by h/4. Fig. 5 shows a comparison of values cal- 
culated in this way with values computed by the more exact 
method; the agreement with theory is seen to be reasonable. 
The characteristic impedance was also calculated from the 
measurements on the open-circuited 880 m Beverage aerial, 
and similar results were obtained, but the scatter of the cal- 
culated values w a s  somewhat greater because of the greater 
variation in the measured impedances, caused by the aerial 
being open-circuited. 

A comparison has  also been made with velocity ratios and 
attenuations measured at very low frequencies by Beverage 



r -  

'' et al.1 One of their  aerials consisted of a single 10 a.w.g. ' 
(2.59 mm-diameter) bare copper conductor erected at a 
height of 8 m over ground whose conductivity was said to 
be 5 x 10-3 S/m. The measured velocity ratios and attenua- 
tions are compared with theoretical values, calculated by 
the method described in Section 2.2, in Table 1. 

1 u = o . o o ~ s / ~  
c 4801 - 0 0 1  q : l O  

u /  2 0  

- l o o m  
0-7 0-9 1.1 1.3 

frequency,MHz 
b 

Fig. 5 
Comparison of theoretical and measured characteristic 
impedance 

a Resistance 
b Reaclance 

~ theoretical 
_- -_  perfect -earth characteristic impedance 
0 measured values 
Conduclor heighl = 3 m 

TABLE 1 

COMPARISON OF THEORETICAL AND MEASURED PRO- 
PAGATION COEFFICIENTS 
Frequency, kHz 12 20 30 
Theoretical velocity ratio 0.823 0-857 0.880 
Measured velocity ratio 0.827 0.840 0-853 
Theoretical attenuation, dB/km 0.40 0.54 0.68 
Measured attenuation, dB/km 0.20 0.27 0.34 

Table 1 shows that the theoretical velocity ratios agree 
reasonably well with measurements, but that the theoretical 
attenuations a re  twice as large as the measured values. 
This ratio is believed to be lortuitous, since closer agree- 
ment between measured and computed attenuations is ob- 
tained at higher frequencies. 

Beverage also describes measurements made on 2-wire and 
4-wire aerials; these show lower velocity ratios and higher 
attenuations than those measured with single-wire aerials. 
This result is consistent with theory. 

5 COMPARISON OTHER THEORIES 

It i s  of interest to compare the present theory with other 
methods which have been used to solve the same problem. 
Of particular interest i s  the method used by Carson.3 which 
i s  restricted to low frequencies because displacement 
currents in the ground a r e  neglected.* Carson's method was 
later extended to higher frequencies by Wise.5 

Carson expresses the field above the ground in the form of 
an angular spectrum of plane waves, and equates this to  the 
sum of the fields due to the current in the conductor and the 
conduction current in the ground. This leads to an expres- 
sion for  the series impedance,arising from the imperfect 
conductivity, i n  the form of a definite integral. Carson's 
paper contains curves and formulas which enable the inte- 
gral to be evaluated. 
Carson's formulas and curves a re  expressed in t e rms  of a 
parameter r, which may be shown to be equal to 2poh(e;)v2, 
where is the imaginary part  of the complex relative per- 

* A similar solution was published independently by 
Pollaczek4 

mittivity of the ground, defined in eqn. 36. Thus r varies as 
f-vz and is small at low frequencies. An interesting feature 
of Carson's theory is that the real part of the integral tends 
to a limiting value when r is small. A consequence is that 
the series resistance i s  then directly proportional to fre- 
quency and that the attenuation increases in the same way. 
This result conflicts with that derived from the compensation 
theorem, which yields attenuations proportional to fu2 at 
low frequencies and is not confirmed by Beverage's mea- 
surements, which also vary as fuz (as can be seen from 
Table 1) even though r is small. Attenuations measured by 
Jenssens at medium frequencies also varied less rapidly 
than Carson's theory predicts. Variation as fu2 is to be 
expected intuitively, because both the complex relative per- 
mittivity of the ground and the penetration depth vary in- 
versely a s  f'J2. 

Wise extended Carson's theory to include the effect of dis- 
placement currents, and his theory is not therefore subject 
to an upper frequency limit. Wise replaced Carson's para- 
meter r by a complex parameter which can be shown to be 
equal to 

280h{j(Kr - 1)) vz 
At low frequencies, Kr >> 1 and jKr N e; ,  and the two para- 
meters have similar values; the theories then give identical 
results. At high frequencies, Kr cr, and it may be shown 
that the ser ies  impedance tends asymptotically to q/lnh, 
where q is the intrinsic impedance of the ground. This 
result is identical with that given at all frequencies by the 
compensation theorem, using the approximate solution de- 
scribed in Section 2.1. 

Reference must also be made to Kikuchi,' who also extended 
Carson's theory to higher frequencies; he does not appear 
to  have been aware of the paper by Wise. Kikuchi's paper 
contains a curve showing the theoretical attenuation of a 
conductor 7.5 m above ground of good conductivity 
at frequencies between 1 and lo4 MHz. The attenuation in- 
creases, following Carson's theory, up to 10 MHz and then 
falls, reaching a minimum value at about 100 MHz. At even 
higher frequencies, it assumes the attenuation appropriate 
to an axial cylindrical surface waves supported by a con- 
ductor of finite resistance in free space. This result is 
hardly surprising, because Kikuchi assumes the relative 
permittivity of the ground to be unity, and, consequently, the 
ground approximates to free space at frequencies above 
1000 MHz. Unfortunately, Kikuchi's paper does not appear 
to contain sufficient information to enable attenuations to 
be calculated for more practical cases.t 

S/m) 

6 CONCLUSIONS 

Use of the compensation theorem has shown that the velocity 
of propagation of the current flowing on a Beverage aerial 
when driven approaches the free-space velocity at high fre- 
quencies. At low frequencies, the velocity is less than the 
free-space velocity, the reduction in velocity depending on 
the ground conductivity and the height of the conductor. These 
factors also govern the rate of attenuation at low frequencies, 
where the theory indicates that the attenuation is proportional 
to the square root of the frequency. At high frequencies, the 
attenuation increases to a limiting value which depends on 
the relative permittivity of the ground. 

Increasing the height of the conductor reduces the attenuation 
and makes the velocity of propagation more nearly equal to 
the free-space velocity. In a long Beverage receiving aerial, ~ 

this would result in an improvement in sensitivity and direc- . 
Civity, provided that the greater voltages induced in the 
vertical end wires can be cancelled. The use of multiple wires 
reduces the velocity and increases the attenuation, and there- 
fore degrades the performance of a Beverage aerial. 

The theory shows that the characteristic impedance of the 
aerial is capacitive and is greater than the characteristic 
impedance of an identical aerial erected over perfectly con- 
ducting ground. At high frequencies, however, the charac- 
terist ic impedance tends towards the perfect-earth Value. 

t It is perhaps worth noting that the mure exact solution 
described in  Section 2-2 also shous a reduction in attenua- 
lion al very high frequencies if c f -  is specified a s  unify,al- 
though the resull obtained differs from Kikuchi's 

0-c 



Theoretical propagation coefficients show reasonably good 
agreement with measurements. At medium frequencies, the 
theoretical velocity of propagation agrees well with mea- 
sured values, but the attenuation is slightly overestimated. 
At very low frequencies, the measured velocity still shows 
good agreement with theory, but the theoretical attenuation 
is too great by a factor of about two. Comparison between 
theory and measurement at high frequencies has yet to be 
made. 
The theory based on the compensation theorem is relatively 
easy to apply, and appears to give results at medium and 
high frequencies which are sufficiently accurate for practical 
purposes. At high frequencies, the theory is consistent with 
the more complicated Carson-Wise theory, but the two theo- 
ries disagree at very low frequencies. Here  the Carson-Wise 
theory predicts attenuations proportional to f, where f is the 
frequency, while the present theory suggests that they vary 
as fv2. Although the approximations contained in the theory 
described in this paper are responsible for overestimating 
the attenuation at very low frequencies, the rate at which the 
attenuation varies with frequency is less liable to error  and 
is, moreover, consistent with measurements. 
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